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SUMMARY

The work is motivated by the recent discovery that ocean surface drifter trajectories contain fractal properties.
This suggests that the dispersion of pollutants in coastal waters may also be described using fractal statistics. The
paper describes the development of a fractional Brownian motion model for simulating pollutant dispersion using
particle tracking. Numerical test cases are used to compare this new model with the results obtained from a
traditional Gaussian particle-tracking model. The results seems to be signi®cantly different, which may have
implications for pollution modelling in the coastal zone. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, society's increasing environmental awareness coupled with global legislation has

resulted in the pollution of river, estuarine and coastal waters becoming an important issue for water

engineers. The need to predict the transport of pollutants has resulted in a rapid rise in the use of

numerical models. Of the methods available, particle-tracking models are increasing in popularity

owing to their ease of application and the well-known dif®culties associated with numerical solutions

(®nite difference or ®nite element) to advection±diffusion equations,1 particularly in areas where high

concentration gradients exist, such as close to point sources.

Where the use of particle tracking models can provide valuable information to aid in problem

analysis and engineering design, the understanding of the physical processes on which the models are

founded remains limited. The potential for improvement is therefore considerable.

To date, the particle tracking models presented in the literature employ random Brownian motion

to simulate turbulent diffusion.2±7 Such models assume that particle tracks are neutrally persistent,

i.e. a particle executes a simple random walk, showing no preference in its direction from step to step

in the diffusion calculations. Field observations,8±10 however, strongly indicate that particle

movement is persistent, where the Lagrangian memory of the particle11 plays an important role in
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dictating the direction of future steps. To simulate persistent motion, one must resort to the emerging

®eld of fractal statistics.

In the following, traditional particle tracking models and their properties are brie¯y reviewed

before discussing the practical generation of fractional Brownian motions (FBMs) and their

associated fractal and diffusion characteristics. The diffusion of a contaminant release in a numerical

example using both a traditional particle tracking model and one based on FBMs is then compared.

2. TRADITIONAL RANDOM WALK MODELS

Traditional random walk models of diffusion release a large number of massless, marked particles

into the ¯ow ®eld and allow them to diffuse by taking random steps in each spatial direction.5 This

diffusion is combined with the mean ¯ow advection, calculated from a knowledge of the mean ¯ow

velocity vector ®eld. The random steps taken by traditional models are usually obtained from either a

Gaussian probability distribution or, in an attempt to reduce computing time, a simpler constant or

delta function distribution. These simpler distributions produce accurate results for large time scales

as they give good approximations to Brownian motion owing to the central limit theorem. There is,

however, one fundamental drawback with the traditional random walk technique. That is, as long as

the steps are statistically independent from one instance in time to the next, then, regardless of the

form of the probability distribution from which the random steps are taken, only Fickian diffusion can

be produced. Therefore, if a large enough number of particles are used in a particle-tracking model,

the resultant standard deviation sc of the particle cloud scales with the square root of time since

release,12 i.e.

sc �
p�2Dt�; �1�

where D is the diffusion coef®cient. In practice, diffusion coef®cients may be found for each spatial

direction in the ¯ow ®eld. Hence a discretized approximation to a Brownian motion in each spatial

direction, B�ti�, may be produced at discrete times ti � iDt, (where i is an integer and Dt is the time

step) by summing a series of random steps taken from a Gaussian distribution, R�ti�, i.e.

B�ti� �
Pi

j�1

R�tj�: �2�

To simulate the required diffusion, a standard deviation sp of the random particle steps R�ti� is

employed, where,

sp �
p�2DDt�: �3�

Hence after N steps the standard deviation of the resultant cloud is given simply by

sc � spN1=2: �4�
As mentioned above, R�ti� may be a simpler distribution. If this is the case equations (3) and (4)

still hold, however, the shape of the diffusing cloud over short times will not be Gaussian. The shape

will change towards Gaussian over suf®ciently large timesÐa manifestation of the central limit

theorem.

3. FRACTIONAL BROWNIAN MOTION AND THE FRACTAL STRUCTURE OF DIFFUSING

PARTICLE PATHS

The Brownian motion of Section 2 is a special member of the larger family of fractional Brownian

motions.13,14 (For reasons of clarity in the discussion below, Brownian motion as discussed above
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will be referred to as regular Brownian motion.) As with regular Brownian motion, fractional

Brownian motion is generated by summing a series of random steps taken from a Gaussian

distribution. This time, however, the summation is weighted over the preceding Brownian steps. This

generates long-time power-law correlations within the resulting motion. In the limit the FBM is

de®ned as

BH�t� �
1

G�H � 1
2
�
�t

ÿ1
�t ÿ t0�Hÿ1=2R�t0� dt0; �5�

where BH�t� is the fractional Brownian motion at time t;R�t� is a continuous white noise function, H

is the Hurst15,16 scaling exponent and G is the gamma function. The fractional integral of equation (5)

is not practically useful owing to the requirement to integrate back to negative in®nity in order to

realize the FBM at time t. A further problem with the above de®nition is that it diverges as t0

approaches ÿ1. To use such a model, it is necessary to specify an FBM which goes through the

origin, i.e. BH�t� � 0 at t � 0. This can be achieved by subtracting the FBM at time t � 0, i.e.

BH�0� �
1

G�H � 1
2
�
�0

ÿ1
�0ÿ t0�Hÿ1=2R�t0� dt; �6�

from the original de®nition, (5). Rearranging the terms gives

BH�t� ÿ BH�0� �
1

G�H � 1
2
�
��0

ÿ1
��t ÿ t0�Hÿ1=2 ÿ �ÿt0�Hÿ1=2�R�t0� dt0 ÿ

�t

0

�t ÿ t0�Hÿ1=2R�t0� dt0
�
: �7�

The problem still remains of having to integrate back to negative in®nity to correctly de®ne the

FBM. This can be overcome by using a ®nite memory leading to a discretised approximation to an

FBM, based on (7), de®ned as

BH�ti� �
1

G�H � 1
2
�
� P0

j�iÿM

��iÿ j�Hÿ1=2 ÿ �ÿj�Hÿ1=2�R�tj� �
Pi

j�1

�iÿ j�Hÿ1=2R�tj�
�
; �8�

where BH�ti� is the ith discrete approximation to the FBM at time ti; MDt is the limited temporal

memory used in the approximation of the FBM; and R�ti� are random steps discretely sampled from a

Gaussian probability distribution. There is an obvious computational cost involved in using the FBM

of (8) rather than the regular Brownian motion of (2), as each step taken in the FBM model requires

the summation of M previous steps. Equation (8) reduces to the regular Brownian motion of (2) when

H � 0�5. Depending on the value of the Hurst exponent, the trace generated from (8) will be

antipersistant �H < 0�5�, neutrally persistent �H � 0�5� or persistent �H > 0�5�:17 Here we

concentrate on persistent FBMs which lead to non-Fickian scaling with characteristics similar to

superdiffusing particles in turbulent ¯uids. The paths of particles undergoing fractional Brownian

motion in two- and three-dimensional ¯ow ®elds may be generated using (8) to calculate the temporal

evolution of each spatial co-ordinate.18

Figure 1 contains trajectories in the plane of two particles, one undergoing regular Brownian

motion (i.e. H � 0�5) and the other an FBM with Hurst exponent equal to 0�75. For simplicity, both

the diffusion coef®cient and the time step are set to unity in each case and 1000 steps are plotted. In

the ®gure, equations (2) and (8) respectively are used to produce the spatial co-ordinates of the

trajectories in the plane. A comparison of the two ®gures shows up the persistent quality of the FBM

trajectory, which Mandelbrot19 described as an appropriately intense tendency but not an obligation

to avoid self-intersection.

Extensive studies by Osborne et al.8 and Sanderson and Booth10 found that the trajectories of

satellite-tracked ocean surface drifters may be described as persistent fractional Brownian motions
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with non-Fickian scaling properties. The studies were conducted in two separate regions of the globe,

the Northeast Atlantic and the Kurisho extension respectively, and yielded general agreement with

the Hurst exponents found, which all lay around 0�79� 0�07. In addition to the Hurst exponent, both

studies characterized the fractional Brownian motions of the trajectories in terms of their fractal

geometric properties through the fractal dimension d. The fractal dimension is the more natural

measure with which to characterize fractional Brownian motions, which are random fractals with

statistical self-similarity at all scales. The fractal dimension is an indication of the ability of the FBM

trajectory to ®ll up the space in which it exists and is related to the Hurst exponent through the

expression20

d � min�1=H; 2�: �9�
Persistent FBMs in the plane are more likely to wander off than remain to ®ll up the plane densely,

hence their fractal dimension lies in the range 1< d< 2. That is, they have a fractal dimension less

than the Euclidean plane in which they exist.21,22

The standard deviation of a diffusing cloud of FBM particles scales with time raised to the power

of the Hurst exponent H, giving a fractal diffusion relationship

sc � �2Dt�H; �10�
where again D is the diffusion coef®cient. Note that both a diffusion coef®cient and a scaling

exponent are required to de®ne fractal diffusion, as the exponent of 1
2

of regular Brownian motion has

been replaced with the more general Hurst exponent H of fractional Brownian motion, where

0 < H < 1. Equation (10) leads to expected variances of 31�6 and 177�8 respectively for the

simulated trajectories in Figures 1(a) and 1(b). The spatial extents of the trajectories in the ®gures are

of the order of these numbers.

4. A NUMERICAL EXAMPLE: SURFACE DIFFUSION IN AN OPEN BAY

In this section the new method is applied to the modelling of two-dimensional surface diffusion in the

coastal zone. An idealized open bay with a main-¯ow-driven recirculation pattern is employed. The

model includes only main ¯ow advection and turbulent diffusion generated by the FBM model, tidal

Figure 1. Regular and fractional Brownian motions
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and other diffusion mechanisms are ignored23,24. A Hurst exponent of 0�75 is employed in both

spatial directions for simplicity. In reality the scaling exponent in the coastal zone can be complex.25

The test case developed was based on an idealized coastal bay that sloped from deep water in the

west to a shallow bay in the east. The main channel has a depth of 50 m over the ®rst 500 m then

shallows to 10 m at the eastern coastline. Figure 2 shows the uniform grid, with cells 100 m by 100 m,

along with the contour plot of the bay.

A surface velocity distribution was obtained from a layered two dimensional hydrodynamic model.

In the model a constant in¯ow of 0�5 m=s was set at the northern boundary. In Figure 3 the velocity

vector plot for the surface layer is shown. Once the velocity ®eld had been generated, four test cases

(two pairs) were selected:

(i) a release in the bay, using regular Brownian motion

(ii) a release in the bay, using fractional Brownian motion with a Hurst exponent of 0�75

(iii) a release upstream of the bay, using regular Brownian motion

(iv) a release upstream of the bay, using fractional Brownian motion with a Hurst exponent of

0�75.

For all cases the diffusion coef®cient was set at D � 0�01 m2=sÿ1 in both spatial directions. Owing to

the computational intensity of the FBM technique, only 400 particles were released in each test case.

Generally larger numbers of particles (of the order of 10,000s) are used in numerical simulations;

however, this smaller number was found adequate to illustrate the problem herein. The particles

moved through the computational grid, advected by the mean advection velocity, found from bilinear

interpolation of the four velocity vectors at the corners of the grid cell, and diffused by taking random

steps according to either (2) or (8). The results from these test cases are illustrated in Figures 5±8.

Figure 2. Simulation geometry: uniform grid and contour plot of bottom surface topography
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Before discussing these ®gures, it is useful to look at Figure 4, which contains a diffusion-only plot of

400 marked particles 6 h after release, i.e. without mean ¯ow advection. The standard deviations of

the resultant clouds in Figure 4 are 20�8 and 94�8 respectivelyÐalmost a ®vefold increase in the

diffusion after 6 h of simulation.

Figures 5 and 6 contain the diffusion of the particle cloud released from grid position (1200, 1700)

at time t � 0. In Figure 5 the particles in the cloud follow regular Brownian paths �H � 0�5�. The

subsequent spreading of the particle cloud can be followed, in 2 h increments, until 12 h after release.

The entrapment of the particle cloud within the recirculatory bay ¯ow can be seen. Figure 6 contains

the particle cloud released from the same location as for Figure 5, but this time the particles follow

fractional Brownian paths with H � 0�75. There is a noticeable increase in the spreading rate of the

cloud, which in physical terms would mean a sharper reduction in contaminant concentration with

time. This in turn has important implications for the predicted toxicity levels to a physiologically safe

level in the environment. In addition, owing to the increased spreading of the FBM particle cloud, a

noticeable part of it has escaped the bay area and is transported downstream. This again is important,

whereby a variation in the Hurst exponent can lead to an area of the ¯ow ®eld being affected by a

contaminant cloud which is not picked up by the regular Brownian motion models used in practice.

Figures 7 and 8 contain the diffusion of the particle cloud released at grid position (850, 2500)

which is in the main ¯ow outside the bay recirculation zone. These ®gures essentially recon®rm the

behaviour observed in Figures 5 and 6. In Figure 7 the regular Brownian particle cloud remains fairly

compact as it is advected by the main ¯ow at the boundary of the recirculation zone. Most of the

cloud is advected past the bay region and contacts with the downstream shoreline. A small part of the

cloud is advected into the bay region, again staying close to the shore. In Figure 8 the evolution of the

Figure 3. Velocity vector ®eld for surface layer
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FBM cloud released in the main ¯ow region is shown. Again a much faster spreading of the cloud is

evident from the ®gure, which leads to more particles moving both closer to the slower-moving ¯ow

at the upstream shoreline and into the faster-moving main ¯ow, resulting in an attenuated

contaminant plume after 2 h compared with the corresponding plot in Figure 7. In addition, the

greater spreading forces more of the cloud into the bay area; however, it also leads to a more even

concentration distribution within the bay, as the particles are not con®ned to the shoreline as was the

case with H � 0�5. Thus an increase in pollution entrapment in the bay region does not necessarily

lead to an increase in contamination of the bay shoreline itself.

5. CONCLUDING REMARKS

A simple method has been described for the generation of non-Fickian diffusion in a particle-tracking

diffusion model by employing fractional Brownian motions. A practical algorithm for their

generation is given in the form of (8), which is an improvement on the method suggested by

Addison.17 The method allows for diffusion, as characterized by a typical length scale in the diffusing

cloud, scaling with time raised to the power of H, the Hurst exponent, where 0 < H < 1. The

technique has been illustrated in a numerical example of surface diffusion in the coastal zone, where

the exponential scaling of the diffusion becomes an important factor in determining future locations

and concentrations of the contaminant cloud. Particle-tracking models which incorporate fractional

Brownian motions will provide the numerical modeller with an enhanced tool for the simulation of

pollutant dispersal by providing more ¯exibility to account for the non-linear scalings of diffusion in

the environment.

Figure 4. Diffusion without convection of particle cloud undergoing regular Brownian motion (H� 0�5) and fractional
Brownian motion (H� 0�75) 6 h after release; D� 0�01 m2 s71
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Figure 5. Release in bayÐregular Brownian motion
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Figure 6. Release in bayÐfractional Brownian motion with H� 0�75
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Figure 7. Release upstream of bayÐregular Brownian motion
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Figure 8. Release upstream of bayÐfractional Brownian motion with H� 0�75
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It is a simple task to extend the technique to model three-dimensional non-Fickian diffusion should

theoretical and=or experimental advances support its use.26 Subsequent work aims to develop the

computational ef®ciency of the model27,28 and use accelerated fractional Brownian motion10 to

model two-particle dispersion, where patch variance may grow at a rate with exponent greater than

two.29
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